ISOLATED UMBILICAL POINTS ON SURFACES IN R?
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ABSTRACT. Recent advances in the application of line congruence techniques
to surfaces in R3 are used to generate surfaces with isolated umbilical points
of all indices less than or equal to 1.

1. INTRODUCTION

Let S be a C? immersed surface in R?. The eigen-directions of the second funda-
mental form determine a pair of foliations on the surface, the principal foliations.
These foliations have singularities at points on .S where the eigenvalues of the second
fundamental form are equal, that is, at umbilical points.

Given an isolated umbilical point on a surface, the index of the umbilic is defined
to be the index of the principal foliation about the point. In general, since the
foliations need not be oriented, the index of an isolated umbilic is an element of
%Z. Well-known examples of isolated umbilics arise on the triaxial and rotationally
symmetric ellipsoid (of index % and 1, respectively) .

The purpose of this note is to show how recent work [2] [3] on line congruences
can be readily used to construct strictly convex surfaces with isolated umbilical
points of any index less than or equal to 1. In particular we introduce the notion of
a regular foliation about an isolated umbilic and completely classify such umbilics.

We find that, for each index less than 1 there is a finite-dimensional family of
such surfaces, for index equal to 1 there is an infinite dimensional family, while for
index greater than 1 there are none. This is in agreement with the Caratheodory
conjecture [1], which states that the index of an umbilic cannot exceed 1. In ad-
dition, each of the families surfaces of index less than 1 are found to be strictly
CONvVex.

2. LINE CONGRUENCE APPROACH TO SURFACES
Definition 1. Let £ be the set of oriented (affine) lines in euclidean R3.

Definition 2. Let ® : T'S? — £ be the map that identifies £ with the tangent
bundle to the unit 2-sphere in euclidean R®, by parallel translation. This bijection
gives £ the structure of a differentiable 4-manifold [4].

Let (£,1) be holomorphic coordinates on T'S?, where ¢ is obtained by stereo-
graphic projection from the south pole onto the plane through the equator, and we
identify (£,7n) with the vector
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Theorem 1. [2] The map ® takes (£,m)€ TS? to the oriented line given by

L= 20— 7€) + 21+ €Or

(1+¢8)? 21

,_ Z2EHTE) + (1= €T ) 22)

(1+¢6)?
where z =z +ix?, t = 23, (x',22,23) are euclidean coordinates on R® = C ® R
and r is an affine parameter along the line.

Definition 3. A line congruence is a surface ¥ C L.

Consider line congruences that arise as graphs of local sections of the bundle map
7 L = S2, defined by projection onto the first factor. Such congruences are given
by n = F(&,€), where F is a complex valued function on an open neighbourhood
of S2. Substituting this function in (2.1) and (2.2) gives an explicit description for
the 2-parameter family of lines in R>.

Of particular interest are the integrable line congruences, that is, those that are
orthogonal to a (possibly singular) foliation of R3:

Theorem 2. [3] The graph of a local section of @ : L — S? is integrable iff the
defining function F satisfies

()2 (L) 05
06 \(1+86)2?) 06 \(1+¢€8)?) '
Turning to the principal foliations on the integral surfaces of such a congruence,
we have:

Theorem 3. [3] Let X be an integrable congruence with defining function F and
S C R? a leaf of the orthogonal foliation. A point p € S is umbilic iff

= oF
OF = — =0,
(%o) 3¢ (%)
where & € S? is the normal direction to S at p. Moreover, the principal foliations
around p are given by the argument of OF and, in particular, the index of the
umbilic is half the index of OF .

Definition 4. An isolated umbilical point p on a surface S in ]}&3 has a reqular
principal foliation if in a neighbourhood of p the argument of OF is a constant
multiple of the argument of the canonical holomorphic coordinate & = |£|e??:

OF = |0F|eN?.
In this case, the index of the umbilical point is N/2.

Let p be an isolated umbilic of index N/2 on a real analytic surface S. We rotate
the surface so that the direction of the normal to S at pis & = 0. In addition, we still
have the freedom to translate the surface, which induces a quadratic holomorphic
transformation on the defining function [3]:

F = F —a+ 2aé + a2,
for « € C and a € R.
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Theorem 4. Let p be an isolated umbilical point of index N/2 on a real analytic
surface, as above. The principal foliation cannot be regqular for N > 2.

For N < 2, after translation, the defining functions F for a real analytic surface
with an isolated regular umbilic point of index N/2 are of the form:

LV F(E9 |
2 EH(l¢]?)
1 AE2 +20EE + AE2E?
0 AE + BNEE2 + 206283
<O [ AN 4 pué N 4 2+ (3 - N)ANEEN 4 (u+ (2 — N)A)E2EN

where H is an arbitrary real analytic function of |£|* and X\, u € C.
The N = 2 surfaces are rotationally symmetric, and for N < 2 the surfaces are
open with a single isolated umbilical point of index N/2 at & = 0.

Proof. On a real analytic surface the Gauss map is real analytic and so the defining
function F' is real analytic. Thus it can be expanded in a power series about & = 0:

oc
F= Z Anmfnfmv
n,m=0
for A,,, € C. For the surface to have an umbilical point at £ = 0 we must have
A()l =0.
The integrability condition (2.3) restricts the coefficients of the power series by

Ao = Ao (2.4)

2450 = A1y — 2400 (2.5)

Ay = Aoy (2.6)
(n4+1)Ani10=A1n — 240 1 (2.7)
(n+1)Anp114+ (n—2)An0 =245, — A1 ns (2.8)

(n + ]-)An—l-l m T (n - 2)An m—1 = (m + 1)Am+1 n+ (m — 2)Am n—1s
(2.9)

where n,m = 2,3,4....
Suppose the principal foliation is regular around p. Consider the Fourier decom-
position of JF about & = 0:

oF =3 Bulehe™,

k=—oc

for complex functions Sy, of |€].
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Integrating both sides of this against e’

5, =0 for I # N.

, using regularity, we find that

On the other hand

OF = Z mAnmfngm_lu
n,m=0

and so, for a regular foliation with index N/2,

A =0 — r+1—s#N and s#0.
(2.10)

The theorem follows from finding which terms of the power series are non-vanishing
when (2.10) is repeatedly combined with (2.4) to (2.9). We must treat the cases
N>2 N=2 N=1, N=0and N < 0 seperately.

For N > 2, equation (2.10) implies 417 = 0 and so, from equations (2.4) and
(2.5), an appropriate translation sets Agg, A1 and Asqg to zero. Equation (2.6) is
identically satisfied as, by (2.10), A5y = 0. Equation (2.10) also ensures that each
term of the right hand side of (2.7) vanishes, and so 4,119 = 0 for n > 2. Similarily,
the right hand side of (2.8) also vanishes, and so we conclude that A,111 = 0
for n > 2. Finally, by (2.10) each term of equation (2.9) vanishes unless either
n+2—m=Norm+2—n = N. In either case, each term on one side of the
equation vanishes and the remaining equation reads:

(m+N-DAp:Nvam+(Mm+N—-—4HA N 2m1=0,

for m > 2. By (2.7) the second of these terms vanishes for m = 2, and proceeding
inductively we find that all of the coefficients must vanish. Thus there are no
regularly foliated umbilical points for N > 2, as claimed.

For N = 2, as before, A;; = 0 and a translation sets Agg, A9 and Asg to zero.
Equation (2.7) reduces to A,110 = 0 for n > 2 and we conclude from equation
(2.8) that A,411 = 0 for n > 2, both by virtue of (2.10). An inductive argument
reduces the last equation to 4,41 n = Ang1rn for n > 2. Thus the power series is &
times a real function of £, as claimed.

For N =1, by (2.10) As; = 0 and, from equation (2.7), A,y10 = 0 for n > 2.
The only non-trivial equation in (2.8) is for n = 2, from which we conclude that
A11 = 2455, The final equation reduces to mA,m + (m — 3)Am_1m_1 = 0 for
m > 3, which inductively forces all the higher coefficients to zero. Letting Aoy = «,
Ao = —2a, Ayy = )\ we find the defining function is

F =a—2a¢+ (A —a)& + 206 + \2€2.

Finally, a translation sets a and «a to zero and yields the stated function.

As before, when N = 0 we can set Agg, Ao and Asy to zero and As; = 0.
Applying (2.10), equation (2.7) says only that 3430 = A5 , while from (2.8) we
find that Asp = 2453 — A;5. Again, an inductive argument shows that equation
(2.9) forces the vanishing of all higher coefficients. Letting A3g = A gives the result
stated.

The case N < 0 is similar to the N = 0 case, the only non-vanishing coefficients
satisfy (3—N)A3_N0 =A19_n—2401_n and (l—N)Ag_NO =2A453_N—A19_N.
Letting A3_no = A and Ag1_n = u completes the proof.

O
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3. DISCUSSION OF EXAMPLES

In a sufficiently small neighbourhood of the umbilic the surfaces in the above
theorem with N < 2 are real analytic. For further insight, we can use the line
congruence description to draw the surfaces in R3.

Given an integrable congruence with defining function F(¢,£) we construct the
integral surfaces in R® by solving

= 2F

(1+¢6?*

for the real function r. This is just the potential that must exist as a consequence
of equation (2.3). By inserting F(&,€) and r(&,€)+C in (2.1) and (2.2), each choice
of real integration constant C yields a parametric surface in R3, the leaves of the
orthogonal foliation. The surface in R® thus obtained is parameterised locally by
the inverse of the Gauss map.

For the examples given above the function r is:

[N ] 3 |
1 20+ NP
0 2O+ NP

<O || FZz(AENEFXEN) + P2 (€N + pg )

Figure 1 shows the N = 2 surface with F = £(2 4+ £€) and C = 1. The lines on
the surface are the image of the lines of longitude and lattitude on S? under the
inverse of the Gauss map which takes the north pole to the umbilical point.

Note that, while the line congruence is smooth everywhere, the surface has a
conical singularity away from the umbilic.

umbilical
point

NOO®ARMON S

Umbilic of Index +1
FIGURE 1

Figures 2 and 3 show surfaces containing umbilics of index —1/2 and —1, respec-
tively, obtained by setting C =1, y =0 and A = 1.
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umbilical
point

Umbilic of Index -1/2

FIGURE 2

F T mbilical

point

-0.4
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Umbilic of Index -1
FIGURE 3

The shape of the lower index families can be surmised from these two: an index
N/2 surface is shaped like a 2 — N-spoked umbrella.
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